1. (15 points) Show that the horizontal range of a projectile having an initial speed v_0 and angle of projection θ_0 is $R = \left(\frac{v_0^2}{g}\right) \sin 2\theta_0$. Then show that a projection angle of 45 degrees gives the maximum horizontal range.

2. (10 points) One end of a vertical spring is fastened to the ceiling. A weight is attached to the other end and slowly lowered to its equilibrium position. At this condition the spring is extended by an amount of d. Please show the amount of extension of the spring when the weight is attached and permitted to act as a freely falling body.

3. (15 points) Prove that the total translational kinetic energy per mole ($0.5 M v_{rms}^2$) of the molecules of an ideal gas is proportional to the temperature of the gas. (hint: $p = \frac{1}{3} \rho v_{rms}^2$)

4. (15 points) Derive an expression for B at a distance r from the center of a long cylindrical wire of radius R, where $r < R$. The wire carries a current i_0, distributed uniformly over the cross section of the wire.

5. (15 points) Prove that the potential due to a point charge can be expressed as $V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r}\right)$ (hint: $E = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r^2}\right)$).

6. (30 points) Explain briefly the following terms. (a) photoelectric effect (b) Hooke’s Law (c) Bernoulli’s equation (d) Gauss’s Law (e) Uncertainty Principle (f) Pauli Exclusion Principle

(以下無試題)