國立聯合大學九十八學年度
大學、四技、進修部 轉學生招生考試試題紙
科目：普通物理 第 1 頁 共 4 頁

注意:
選擇題答案請寫於答案欄上並註明題號；選擇題僅需列出答案，不必有算式，計算題必須列出算式，否則不予計分。

參考數據:

重力加速度 g=9.81 m/s²；理想氣體常數 R=8.31 J/K mol；冰的溶解熱=80 cal/g；水的蒸發熱=540 cal/g；
1 cal=4.2 J；

1. 選擇題：每題 4 分，共 80 分

1. 一人吃了一頓熱量 1000 大卡的大餐，深感後悔；花了 6 小時騎單車消耗掉這些熱量。請問在騎單車過程中平均耗能的功率為：(A) 0.046 W (B) 46 W (C) 166 W (D) 0.166 W

2. 0℃、100 公克的冰塊變成 100℃ 的水蒸氣至少要吸收多少能量？
 (A) 17143 J (B) 72 J (C) 72000 J (D) 302400 J

3. 一理想氣體由 300K 加溫至 400K，其氣體分子之均方根速度 (root-mean-squared speed) 增加比率為：
 (A) 1.15 (B) 1.33 (C) 0.75 (D) 0.87

4. 一容器為固定之容器，裝入 4 個耳的氣體，其等定定容比熱 Cᵥ 為 2.5R。若其溫度由 10℃ 升至 454℃，
 其內能(internal energy)變化為多少？(A) 444 J (B) 36,900 J (C) 9,230 J (D) 3,690 J

5. 一溫度為 312℃、質量為 75g 之銅塊被扔進一裝滿 500g 水之絕熱容器，水溫度為 12℃。已知水的比熱
 為：1.00 cal/g·K，銅之比熱為：0.0923 cal/g·K。請問銅塊與水達熱平衡時之溫度為：
 (A) 51℃ (B) 36℃ (C) 16℃ (D) 163℃

6. 在一行星表面，一古董時鐘之單擺振動週期為 1.67 s。如果該單擺之擺長為 1.00 m，請問該行星表面之
 重力加速度為何？ A) 15.6 m/s² B) 17.0 m/s² C) 14.2 m/s² D) 13.2 m/s²

7. 一力之方向為 y 軸正向，作用於座標為 x = 2.3 m, y = 1.4 的點上，相對於原點產生了 61 N·m 大小的力
 矩。請問此力之大小為何？ A) 27 N B) 76 N C) 44 N D) 61 N
科目：普通物理 第2頁共4頁

8. 一物體之半徑為 R，其均勻球體繞其直徑旋轉，其角速度為 ω。上半部分除為 R/2
之均勻球體。請問其新的角速度為：A) L/4 B) L/2 C) L D) 2L E) 4L

9. 一物體烘於一彈簧末端，10 秒內旋轉 20 次。其頻率為：A) 2 Hz B) 10 s C) 0.5 Hz D) 2 s E) 0.50 s

10. 一物體之半徑為 1.60 m，質量為 2.30 kg 之實心球自靜止狀態沿一斜面無滑動滾下，流至斜面底部之角速度為
5.04 rad/s。請問斜面高度為：A) 5.98 m B) 4.98 m C) 3.74 m D) 4.38 m

11. 一質量為 1.4 kg 的物體在位置為 x = 2.00 m, y = 3.10 m 時之速率為 5.07 m/s，運動方向朝向東北方 45°。
此時該物體相對於原點之角速度大小為：A) 7.7 kg·m²/s B) 6.6 kg·m²/s C) 5.5 kg·m²/s D) 3.9

12. 兩個一模一樣的導體球，質心距離為 1 公尺，各自帶有電荷。庫倫力：A) 64 / 81 B) 81 / 64 C) 8 / 9 D) 9 / 8

13. 一電子水平向右飛入一均勻電場，電場方向為向上。下圖中那一軌跡為電子的？

 ![電場示意图](image)

 A) 軌跡 W B) 軌跡 Z C) 軌跡 Y D) 軌跡 X

14. 一徑為 R 的導體環分為兩個半圓。上半徑均勻分佈有正電荷 Q，下半徑均勻分佈有負電荷 -Q，
則位於圓心處電場大小為：

 ![電場示意图](image)

 A) 0 B) 大於 0，小於 2kQ/R² C) 2kQ/R² D) 2kQ/R
科目：普通物理 第3页共4页

15. 下圖中一帶電粒子以v之速率進入一均勻磁場，在時間T內轉了半圈再出磁場，則下列敘述何者正確？

A) 帶電粒子帶正電。
B) 最後速率大於v。
C) 如果最初速率為$0.5v$，粒子在磁場中待的時間仍為T。
D) 如果最初速率為$0.5v$，粒子路徑小於半圓。

16. 圖示一均勻磁場大小(B)隨時間(t)之變化。磁場方向為垂直於一導線迴圈。請依圖上感應電動
勢(emf)大小，由小而大排列圖上的1、2、3、4四個區域。

A) $1, 2, 3, 4$
B) $2, 4, 3, 1$
C) $4, 3, 1, 2$
D) $1, 3, 4, 2$
E) $4, 3, 2, 1$

17. 在以加速度a往上爬的一電梯中，以初速v將一物體垂直上拋，試問該物體最高可以上升多少距離？

(A) $\frac{v^2}{2(g+a)}$ (B) $\frac{v^2}{g+a}$ (C) $\frac{2v^2}{g+a}$ (D) $\frac{4v^2}{g+a}$

18. 一個以小角度擺動的縛子長度為L，下端綁著質量為m的小鐵球，擺動的最大角度為θ。若忽略縛子的重量，則縛上所承受的張力最大值為：

(A) $2mg(1-\cos\theta)$ (B) $2mg(1+\cos\theta)$ (C) $mg(3-2\cos\theta)$ (D) $mg(3+2\cos\theta)$

19. 質量為m的子彈以速度v水平射入一靜置於光滑水平地面上的木塊，之後子彈留在木塊中，木塊質量為M，則碰撞後木塊的速度為何？

(A) v (B) $\frac{mv}{m+M}$ (C) $\frac{(m+M)v}{m}$ (D) $\frac{(m+M)v}{M}$

20. 假設地球半徑為R，地表的重力加速度為g，一人造衛星在地表上方高度為R的地方繞地球做等速圓周運動，其運行速率為何？

(A) $\sqrt{0.5gR}$ (B) \sqrt{gR} (C) $\sqrt{2gR}$ (D) $\sqrt{4gR}$
15. 下圖中一帶電粒子以 \(v \) 之速率進入一均勻磁場，在時間 \(T \) 內轉了半圓再出磁場，則下列敘述何者正確？

A) 帶電粒子帶正電。
B) 最後速率大於 \(v \)。
C) 如果最初速率為 \(0.5v \), 粒子在磁場中待的時間仍為 \(T \)。
D) 如果最初速率為 \(0.5v \), 粒子路徑小於半圓。

16. 圖示一均勻磁場大小 \(B \) 隨時間 \(t \) 之變化。磁場方向為垂直於一導線迴圈。請依迴圈上感應電動勢 \((emf) \) 大小，由小而大排列圖上的 1、2、3、4 四個區域。

A) 1, 2, 3, 4
B) 2, 4, 3, 1
C) 4, 3, 1, 2
D) 1, 3, 4, 2
E) 4, 3, 2, 1

17. 在以加速度 \(a \) 往上爬升的一電梯中，以初速 \(v \) 將一物體垂直向上拋，試問該物體最上可以上升多少距離？

(A) \(\frac{v^2}{2(g + a)} \)
(B) \(\frac{v^2}{g + a} \)
(C) \(\frac{2v^2}{g + a} \)
(D) \(\frac{4v^2}{g + a} \)

18. 一個以小角度振動的繩子長度為 \(L \)，下端綁著質量為 \(m \) 的小鐵球，振動的最大角度為 \(\theta \)。若忽略繩子的重量，則繩子所承受的張力最大值為：

(A) \(2mg(1 - \cos \theta) \)
(B) \(2mg(1 + \cos \theta) \)
(C) \(mg(3 - 2 \cos \theta) \)
(D) \(mg(3 + 2 \cos \theta) \)

19. 質量為 \(m \) 的子彈以速度 \(v \) 水平射入一靜置於光滑水平地面上的木塊，之後子彈留在木塊中，木塊質量為 \(M \)，則碰撞後木塊的速度為何？

(A) \(v \)
(B) \(\frac{mv}{(m + M)} \)
(C) \(\frac{(m + M)v}{m} \)
(D) \(\frac{(m + M)v}{M} \)

20. 假設地球半徑為 \(R \)，地表的重力加速度為 \(g \)。人造衛星在地表上方高度為 \(R \) 的地方繞地球做等速圓周運動，其運行速率為何？

(A) \(\sqrt{0.5gR} \)
(B) \(\sqrt{gR} \)
(C) \(\sqrt{2gR} \)
(D) \(\sqrt{4gR} \)